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A new algorithm based on spectral element discretizations and flux-
corrected transport concepts is developed for the solution of the Euler
equations of inviscid compressible fluid flow. A conservative formula-
tion is propased based on ane- and two-dimensianal cell-avaraging
and reconstruction prpcedures, which employ a staggered mesh
ot Gauss-Chebyshev and Gauss-lohatto—~Chebyshev collocation
points. Particular emphasis is placed on the construction of robust
boundary and interfacial conditions in one- and two-dimensions. it is
demonstrated through shock-tube problems and two-dimensional
simulations that the proposed aigorithrn leads to stable, non-oscillatory
solutions aof high accuracy, Of particular impartance is the fact that
dispersion errors are minimal, as show through experiments. From
the operational point of view, casting the methed in a spactral element
formulation provides flexibility in the discretization, since a variable
nurmber of macro-elements or collocation points per element can be
employed to accomodate both accuracy and geometric requirements.
£+ 1994 Academic Press, Inc.

1. INTRODUCTION

Spectral element methods are high-order weighted
residual techniques for the solution of partial differential
equations typically encountered in fluid dynamics {31, 207
Their success in the recent past in simulating complex
mncompressible flows derives from the flexibility of the
method in representing accurately non-trivial geometries
while preserving the good resolution properties of spectral
methods [ 19]. In these simulations, both the geometry and
the solution are described through smooth functions so that
speciral element methods can obtain exponential accuracy.
This is not the case, though, for non-smooth geometries and
discontinuous solutions. To address the first issue, spectral
element methods for non-smooth domains have been
recentiy developed [327; in many situations convergence
rates faster than algebraic can be recovered {or the elliptic
problems considered. However, the use of spectral methods
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in simulations with discontinuous solutions remains
problematic. In particular, the success of global and multi-
domain spectral methods in simulating compressible flows
with shock waves has been quite limited, despite some
recent significant advances (see [2-4, 8, 22, 18, 7]}

There are several issues to be addressed for a successful
implementation of speciral methods to compressible flow
simulations: Most importantly, devising ways to treat dis-
continuities in the solution (neutralizing the effects of the
associated Gibbs phenomena). Also, imcorporating the
boundary conditions in a consistent way even in regions
where either the solution or the peometry has finite
regularity. This is especiaily important, since spectrat
methods in general are known to require boundary condi-
tions that are both physically correct and computationally
robust {8]. On a more fundamental level, the issue of the
attainment or not of spectral accuracy in the presence of dis-
continuities presents another interesting question. While a
problem-dependent approach may be used to address some
of these issues (see, for instance, [ 3, 387), it will inevitably
result in Joss of generality, Multi-domain spectral methods
reported by Kopriva [ 21, 23] are very promising; however,
their use of shock-fitting {as opposed to shock-capturing),
along with the implicit assumpiion of regulariity in the
geometry, may somewhat limit their generality.

A straightforward application of spectral methods in
flows described by discontinuous solutions is not possible as
monoetonicity is not preserved in high-order methods in
discretizing hyperbolic conservation laws {(see [12]). To
demonstrate this consider, for example, the linear advection
of a square wave in a periodic domain. In Fig. | we plot a
spectral element solution based on Chebyshev collocation
after 750,000 time steps (47 = 107%). There are two impor-
tant features characteristic of this spectral element simula-
tion. First, large amplitude oscillations appear everywhere
in the domain; second, the spectral element solution has
been convected with the correcr speed even after this very
large number of time steps. The combination of these two
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FIG. 1. Linear advection (velocity=1) of a square wave using
collocation on a spectral element discretization (three elements of equal
length, 60 Chebyshev—Gauss-Lobatto points per element). Periodic
boundary conditions are imposed. For the time-stepping second-order
Adams-Bashforth is used. The time-integration proceeds for 750,000 time
steps of size A1 = 10; solid line, exacet solution.

{seemingly contradictory) facts can only serve as numerical
evidence to the argument made by Lax [25], that informa-
tion is contained in these oscillations and that high-order
schemes retain more information than low-order schemes.

To circumvent these difficulties a Aybrid spectral
element~FCT method was proposed in [117 for scalar
hyperbolic conservation laws. This method consists of two
stages, a tratisport or convective~-diffusive stage and an
antidiffusive or corrective stage. In the first stage a first-
order discretization scheme is employed to preserve
monotonicity, while in the second stage a multi-domain
spectral algorithm is employed that corrects the inter-
mediate solution and dictates the accuracy away from dis-
continuities. Details of the standard flux corrected transport
(FCT) algorithm can be found in the original article { 1]
and more recent developments in [29]. The particular
approach used in our work is motivated by the hybridiza-
tion concepts presented in [ 17, 43]. In [27] McDonald has
also studied the pseudospectral method as part of an FCT
algerithm in solving scalar hyperbolic equations; in pat-
ticular, he demonstrated through numerical experiments its
superiority in accuracy regarding phase and group
velocities as compared to finite difference schemes of all
attainable orders {{for a fixed resolution).

As in our previons work [l1], the starting point is
a general conservative formulation. It is based on ceil

averaging and reconstruction procedures that make use of a
staggered one-dimensional grid of Gauss-Chebyshev and
Gauss-Lobatto-Chebyshey distributions in each spectral
element. Associated with the first grid are grerage quan-
tities, while on the second grid, which inctudes end-points
in each element, reconstructed values and fluxes are
calculated. It was demonsirated in [ 117 for model scalar
linear and non-linear problems that the spectral
element-FCT algorithm leads to stable, non-oscillatory
solutions of high accuracy away from discontinuities.
Another important issue related to FCT algorithms has
been the appearnce of terracing in smooth parts of the
solution (see Fig 2). This problem was first addressed
nigorously by Grandzovan [13] who attributed the
phenomenon to dispersion errors and subsequently
corrected it by altering the weighting in the FCT scheme.
This procedute, however, is limited to uniform meshes.
Another approach in dealing with terracing effects was
followed in [ {11, where the same assumption was made,
but the approach was to minimize dispersion errors by
simply resorting to an appropriate time integrator; this is
explained in more detail in the current work.

In this paper, we extend the spectral element-FCT
method to systems of hyperbolic conservation laws in one
and two dimensions. In particular, we consider the
compressible Euler equations in geometrically complex

4 ] 8 i0

FIG. 2. Manifesiation of the “terracing effect.” Linear advection
{velocity = 1) of a2 waveform consisting of 2 square wave and a semicircle
{the axes are not drawn to the same scale). A flux-corrected transport algo-
rithen is used, where the high-order component is formally second-order
accurate. The equidistributed mesh has 128 paints. Time integration: leap-
frog trapezoidal, The numericat solution is plotted after 12,000 time steps
(At=10".
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domains. In Section 2, after presenting the one-dimenstonal
conservative formulation we review the FCT algorithm and
motivate the use of high-order schemes. In that context we
define spectral eclement-Chebyshev cell-averaging and
reconstruction procedures, and address the issue of inter-
facial conditions across elements. The section ends with
several shock-tube results which demonstrate the accuracy
of the proposed algorithm. Extensions of all these concepts
to two dimensions are presented in Section 3, where we also
include several benchmark problems. In Section 4, the sum-
mary preceeds a discussion on the computational efficiency
of the method.

2. ONE-DIMENSIONAL FORMULATION

2.1, Euler Equations in Conservative Form

The systern of Euler equations for polytropic gas in one
dimension is given by

u, + f{u}, =0, (1a)
with
g m
u={ml{, f=I m*p+P |, (1b)
£ (P+Eymlp

2
P=(y*1)(5-1”’——), (1c)
2p

where p denotes density, u is velocity, P is pressure, E is
totai energy, m = pu is the momentum, and y is the ratio of
the specific beats of a polytropic gas.

In the general case that we consider here the nodal points
are distributed in a non-unifortn manner and thus we need
to define appropriate cell averaged quantities. In particular,

adopting the terminology explained in Fig. 3 the cell-
averaged quantity ; is given by

1 xi+
f w{x, t) dx.

— {4a)
Kyt "X~ g

Given this definition, the advection equation for wu(x, 1),
e, Ju/ox +df(u)/8x=0 can be integrated along a cell
extending fromi 10" as

di; | Sl = flu-)
di Ax,

!

=0, (2a)

where we have also defined

dx;=x0 —xp-.

{2b)

a
Cell
i
1 ]
] {
i te
b
k-t K K+
5 ’ J<KN 1S isKN
t1gdg
s I 0SISKN-1

FIG. 3. Schematic for the counservative discretization: {a) The celi
topology. Averaged values are stored at points j, whereas points it contain
point values. (b) Decomposition of an interval into Chebyshev spectra)
elements.

The above equation suggests that the fluxes f(#) should be
evaluated at the ends of the cell using de-averaged
{reconstructed) velocity values; this formulation leads to the
conservative (or flux) form of the semi-discrete wave
equation.

22. FCT Method

The spectral element-FCT method was formulated for
scalar conservation laws in [11]. Here we extend u for
systems of nonlinear conservation laws. This method
consists of two stages: a transport-diffusive stage and an
antidiffusive or corrective stage. In the first stage, a first-
order positive-type scheme is implemented, while in the
second a “limited” correction due to the spectral element
discretization is made.

The main steps of the proposed algorithm are as foltows:

+ Step 1. Evaluate the field of cell averages corte-
sponding to the initial condition.

+ Step 2. Compute the transportive fluxes corresponding
to the low order scheme. The low-order positive-type
scheme used here is Roe’s scheme based on the cell-averaged
value. The low-order flux F,+ is defined as

Ky, )+ f@,)
- 2

(ﬁ.i+l _ﬁ.!]

F[+ 2 ’

~R-{D{-R™ (3)

where R is the Jacobiap matrix consisting of the right-
eigenvectors of the Euler system linearized around the

Roe-averaged state between o, , , and @1,

» Step 3. Advance (explicitly) cell averages in time using
low-order fluxes to obtain the low order transported and
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FIG. 4. Influence of the order of reconstruction on the resolution of contact discontinuities. The Lax problem is solved with a finite volume FCT
method on an equidistributed mesh of 200 points. The time-stepping scheme is a hybrid between forward Euler and third-order Adams—Bashforth.
Density profiles corresponding 10 formal orders 2, 4, 6, and 8 for the high-order scheme are plotted in a-d, respectively. The spread of the contact
discontuinty varies inversely proportional with the order of reconstruction.



A SPECTRAL ELEMENT-FCT METHOD 69

diffusive solution @'¥. This is done using the third-order

Adams-Bashforth scheme [97].

« Step 4. Compute the transportive fluxes f; corre-
sponding to the spectral element discretization.

» Step 5. Compute the antidiffusive fluxes A,=1,—F,
and limite them to obtain AJ. Here we use the same limiter
as in [ 117 which is based on the original ideas by Boris and
Book [ 1] as well as the extensions presented in [27]. We
found it crucial that the limiter be applied to the charac-
teristic antidiffusive {luxes and not the componentwise
fluxes.

« Step 6. Update (explicitly) the cell averages on the new
time level using the limited antidiffusive fluxes (using the
third-order Adams-Bashforth scheme) ;"

o Step 7. Reconstruct point values from the cell averages
at the new time level,

« Step 8. If the target time is not achieved go to Step 2.

2.3, Represemtation of Discontinuities

In his 1974 report Harten [ 147 argues that for discon-
tinutties of the contact type the spread in time is propor-
tional to the number of time-steps taken, ¥, to an exponent
that depends on the formal order of accuracy of the spatial
discretization. More precisely, if the order of scheme is v,
then the spread W is found to be proportional to NV~

-4 -2 0 2 4
X

FI1G. 5. Same as Fig. 4, but for Fourer high-order component. The
formal order of the scheme is the highest possible for the given mesh
{N =1256). The transition zone of the contact discontinuity is extremely
narrow.

{some experiments to demonsirate this effect for a linear
advection equation were also reported by Roe [36]). This
is in ¢ontrast to the shock resolution which is independent
of the number of time steps taken and depends only on the
artificiai viscosity of the discretization scheme. As regards
the smooth part of the solution it is obvious that optimal
phase properties are required. High-order schemes have
proven to give excellent phase properties [27, 447 and
therefore to minimize dispersion errors. In the case of the
FCT algorithm, the minmod limiter erroneously triggered
by dispersion errors may cause substantial terracing of a
smooth waveform. To prevent this a high-order time-step-
ping can be used as proposed in [ 11], where a third-order
Adams-Bashforth time integrator was employed for a scalar
advection equation.

It is clear from the discussion above that good resolution
of contact discontinuities as well as accurate representation
of smooth parts of the solution require both high-order tem-
poral and spatial discretization schemes. To demonstrate
this numerically, we examine the performance of different
orders of reconstruction employed as high-order schemes in
the FCT context. As 2 model problem we choose the Lax
shock-tube problem {3971 solved on an equidistributed
mesh. In Fig. 4 we plot the solution for a reconstruction
corresponding to orders 2, 4, 6, and 8 (sce also [44 ]} using
200 mesh points. A hybrid time-stepping consisting of
a third-order Adams-Bashforth and an Eulerforward

FIG. 6. Same as Fig. 5, but for simpte forward BEuler as time-stepping
scheme. The optimal phase properties of the high-order component are
damped (N =256). Dramatic appearance of “terracing” in the continuous
expansion region,
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scheme was employed locally to advance the smooth and
discontinuous part of the solution, respectively. The
Adams-Bashforth scheme prevents the appearance of
terracing in the expansion fan, while the resolution of con-
tact discontinuities is improved substantially with the order
of the reconstruction, in agreement with Harten’s argument.
These results are further improved in the limit of infinite-
order (Fourier) reconstruction. This is shown in Fig. 5,
where 256 modes are employed in the discretization and a
hybrid time-stepping is used as before. Note that if a first-
order time integration is employed throughout the domain
severe terracing effects are present as shown in Fig. 6.
Profiles obtained with N = 128 (not shown here) are also of
very high gquality and at least comparable to the 200 mesh
points of high-order finite volume results [ 107.

We have also seen from the examples above the shock
resolution does not depend on the order of reconstruction,
consistent with the theoretical results of Harten [14]. On
the other hand, the use of a high-order spatial discretization
thoughout the domain does not influence the quality of the
results in the shock transition zone adversely, Given these
results we have chosen a Chebyshev multi-domain dis-
cretization as a high-order component in the FCT algo-
rithm. The cell averaging and reconstruction procedures
pertinent to this discretization are presented in the next
section.

2.4. Spectral Element—Chebyshev Cell Averages and
Reconstruction

A spectral-Chebyshev expansion corresponds to a non-
uniform distribution of points with cells of variable size 4x;.
Following the formutation of Cai er af. [ 2] we select the set
of points f to be the Gauss-Chebyshev points (see Fig. 3b)
defined by

x;=cos((j— 1/2) 48),

where A0=n/N, 1<jsN

{4a)

while the end points i*, i~ of each cell are the

Gauss--Lobatto points defined as

X, == cos(i 46), 0<igN. (4b)

Using these two sets of points and the definition
(Eqs. (4)), a Chebyshev spectral expansion of the form

N

u(x)= Y a, Tu(x), (5a)
k=0
after averaging becomes
N —_—
d(xt= ¥ a,Ty(x), (5b)
k=D

where the cell averaged Chebyshev polynomial is given by

To=1 (6a)
T,=10,U\(x) (6b)
Tk=%[akUk(x)_Jk—ZUk—z(x)]e Y22, (6bc)

where
_sin(k + 1)(46/2)] (6d)

T T ¥ 1) sin(46/2)

Here we have introduced U(x)=(1/(k+ 1)) T, (x)tobe
the second kind of Chebyshev polynomial

In the spectral element discretization the domain is
broken up into several macro-elements (Fig. 3b} within
which the velocity is expanded in terms of Chebyshev poly-
nomials. Therefore, in the kth element an expansion of the
form

N

2 “fh:‘(x)

=0

wH(x) =

(7a}

defined on the Gauss-Lobaito~Chebyshev points after the
application of the averaging operator takes the form

N

a(x) =Y ubh(x),

i=0

(7b)

where «* are the point values for element &; #,(x) and
h,(x) are the Gauss-~Lobatto- Chebyshev- Lagrangian inter-
polant and its corresponding celi-averaged function
obtained from

[...

0<i<N, (8a)

ll

2#!\) 21“

Tyl Th(x),

ﬁl
"‘el

(8b)

"‘n
—

:s-l
)l

— T.(x,;}

P(x), O0<i<N,

X
L

where ¢, =1 if n #0, N and ¢, = 2 otherwise. In matrix form
the above cell averaging procedure can be written as

= Ajuf, 0<i<N, O0<j<N, (%)
where the cell averaging matrix is defined as Afi:E,-(xj);

here x; refers to local coordinate [ 31]. Based on the nodal
cell averaged values obtained from (9} the corresponding
polynomial can be constructed using Lagrangian interpola-
tion, i.e.,

ix)= T g,(x), (10a)

=1
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where the Gauss—Chebyshev—-Lagrangian interpolant is
given by

L= X7 T x)

(1]
gy = (=1 L=

I<j<N. (10b)

Having constructed a cell averaging procedure for the spec-
tral element discretization we proceed next with the inverse
operation of de-averaging and recovering point values for
the evaluation of fluxes in Eq. {5a).

The reconstruction operation can also be put into matrix
form. We consider first the polynomial! describing the cell-
averaged values,

N
alx)= ) afgix)

i=1

(Ila}

An ahernative to (10b) expression for the Gauss-
Chebyshev—Lagrangian interpolant is

N-1

gj(x) = z

p=0

2
e T,(x;) Tp(x). {11b)
P
We can also express the g,{x) in terms of the second kind
Chebyshev polynomials; to this end we recall that
T (x)=3[U(x)—U,_,(x)],

Yp=2. (12a)

Using the above equation we can rewrite g,(x) as

N-—1
gj(x) = Z }”igp Up(x)’
0

P=

1<j<N.  (i2b)

Here we have defined:

for p=N-2,N—1, (12

o1
.lj, = ﬁ [ Tp(xj) - Tp+2(xj):l

for 0K psN-3 {12d)

The interpolating polynomial corresponding to point
values (Gauss-Chebyshev-Lobatto points) can then be
constructed using the de-averaged Lagrangian interpolants
G,as

N
ux)=3y #G/Lx).
i=1

i=

{13)

The cell-averaged second kind Chebyshev polynomial is
obtained using the definition of Eq. (4) {see details in [ 27),

U,(x) =8, U,(x) (14)

with o, obtained from Eq. (6d). To determine G,(x) there-
fore we consider (13)-{14) and (12) and thus we obtain

N-127
Y -2 U,x).

r=0 GP

Gy(x)= (15)

To recover the point values u; we simply set x=x, in
the interpolating polynomial u({x). In matrix form the
reconstruction procedure (on elemental level) can be
written in the form

—a¥
U =g

{16a)

where

gy =G,(x). (16b)

Based on these N point values the interpolating polyno-
mial #(x} can then be construcied from Eq. {13). This local
reconstruction procedure is repeated for all elements. To
form a global interpolant, however, we tneed to impose con-
tinuity conditions at elemental interfaces as we explain in
the next section.

2.5. Boundary and Interfacial Conditions

While the discretization of the Euler system using the cell-
averaging approach is straightforward, the imposition of
the interfacial condition requires further discussion. A
method for imposing characteristic boundary conditions on
the conservative variables is presented in [ 8. The interfa-
ctal condition can be imposed in a similar way; however, the
reconstructed values are needed for the computation of the
numerical fluxes. It is therefore more efficient to impose
boundary and interfacial conditions on the numerical fluxes
directly {38]). To do so, we consider the {reconstructed)
conservative variables defined at the same peint but on dif-
ferent elements to be the left and right states of af one-
dimensional Riemann problem, in much the same way as
flux-point values are treated in MUSCL schemes [26]. In
detail the procedure is as follows:

Consider the Jacobian matrix of the system given in
Eq. (1) by A{u) =2of/0n The right-cigenvectors of 4 are

| 1 1
ri(ul={ u—c |, (0=l u |, ry{u)={ u+tc |,
H—uc Ju? H+uc

(17)

where ¢ =, /yP/p is the speed of sound and the enthalpy H
is defined by

us. {18)
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Let us denote the matrix of right-eigenvectors of the where the eigenvalues of A are given by
Jacobian A = A{@) as
A=u—c, Ar=u, la=u+c (21}
R =(r (@), rp(11}), r;(a)), {19)
The flux te be imposed at the interface y between elements ¢
where @ is the Roe-averaged state (see [35]) between the and (e+ 1} is determined by Roe’s flux-splitting (see [357)
states u, and ug*' at the ends of two adjacent elements e, as:
{e 4+ 1). Here N and 0 denote the rightmost and the leftmost

elemental nodes, respectively. Then fluc+ Y+ flus etb__ g
P Y f, - (ug )2+ (uN)—R'}DI R (ug . uN). (22)
A 0 0
D=R"" 4. R={0 i, 0], {(20)  Other choices are also possible (e.g., [ 30, 16]).
0 0 2, In the case of boundary conditions a similar procedure is
1.5{ T—— —T T T ———— 15T T -~ T ~ T
!
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FL. 7. Spectral efement-FCT method. Solution of the Sod Riemann problem with K=2, N =75 at time 1 =04. Profiles for density, velocity,
pressure {the solid line represents the exact solution). Note the narrowness of the moving contact discontinuity in the density profile as well as the faithful
representation of corners in all profiles.
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followed by assuming a fictitious spectral element where
either an extrapolation is made from the domain interior as
in supersonic outflow or the known variables are stored as
inflow and subsonic outflow. The effect of walls is
reproduced by creating fictitious cells where the variables
are mirrored from inside the domain (both the averages and
the reconstructed ).

2.6. Numerical Results

We begin by demonstrating the output of our algorithm
for two well-known benchmark test cases, namely the so-
called Sod and Lax shock tube problems. In both cases, a
single diaphragm separates initially two phases of the same
gas. They are defined by the following initial data [ 397]:

73

1. Sod’s problem

p[:], q1=0, P[II, —lﬂxigo,
(23)
p,=0125 ¢,=0, P,=01, 0<gxgl,
2. Lax’s problen::
pi=0445 g4,=0698 P,=3528 —1<x<0
24
p.=05, q,=0, P =0571, 0sx<gl. (24)

In Fig. 7 we plot the solution to the Sod problem corre-
sponding to K =2 spectral elements (of the same length)
with N =75 Gauss-Lobatto-Chebyshev points in each,

15T N 7 T T 7 20 T T T ———r—
) J
v d 1
+ | 1
s 15F -
L )
1 - 4
I i
1 .
5 4
a 2 i ]
b i 5F 4
4 0. -
05 d L—— - [ b
. | | ]
| 1 of N
] | ]
1
0 e i 3 L - S DELL i — 1 1 - 5
-1 -0.5 0 05 1 -1 05 o 05 1
b X
4 —r— - T ¥ T
3 .
o 2 N
1 .
L
0 i PR Y U A N " il
-1 -0.5 0 o5 1

FIG. 8, Spectral element-FCT method. Solution of the Lax Riemann problem with K=2, ¥ =75 at time ¢ =0.26. Profiles for density, velocity,
pressure (the solid line represents the exact solution). The same observations apply as for Fig. 7.



74

at time =04 The agreement with the exact solution
represented by the solid line is very good; in particular,
both the contact discontinuity and the shock are two-point
transitions while the end-points of the rarefaction fan
preserve their sharpness.

For the Lax problem the solution is shown in Fig. 8 for
the same discretization at time ¢ = 0.26. The same observa-
tions regarding accuracy apply here; the contact discon-
tinuity is captured with three points. Experiments with a
different discretization consisting of K=75 and N=3
(corresponding to the same total number of grid points as
in Fig. 8) show less sharp profiles, as seen in Fig. 9. The
contact discontinuity is now a 10 point-transition which,
along with the results of Fig. 8 suggest that high-order poly-
nomial approximation does indeed result in sharp
resolution of contact discontinuities, in agreement with

GIANNAKOUROS AND KARNIADAKIS

Harten’s [14] theoretical postulales (see Section 2.3).
Also, the ends of the expansion fan have been smeared
significantly in the low-order polynomial approximation.
In order to investigate the effect of different discretiza-
tions as defined by the pair (K, N), we have performed
several experiments for the aforementioned benchmark
problems. Our results have shown consistently the same
influence of high-order approximation to the quality of con-
tact discontinuities and rerefaction fans. However, for cer-
tain discretizations the appearnce of localized errors was
observed. One such situation involes the Lax problem
solved on a mesh consisting of K=10 and N =16 and
producing the pressure profile plotted in Fig. 10. It is seen
that there has occurred an accumulation of errors concen-
trated at and around elemental boundaries where the shock
has crossed. At the same time, solving for the Sod problem
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FIG. 9. Same as Fig. 8. Solution of the Lax Riemann probiem at time 7 =0.26, now with K= 50, ¥ = 3. Profiles for density, velocity, pressure, We
have lower formal order of accuracy than previously, thus we expect inferior phase properties. The quality of the results has decreased.
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FIG. 10. Spectral element-FCT method. Solution of the Lax Riemann
problem with K = 10, N =16 at time ¢ =0.26. Profile for pressure. The Jow-
order schemte is affected by the strongly varying Chebyshev mesh. “Kinks"”
are generated whenever the shock crosses an element boundary.

on the same mesh produces the pressure distribution shown
in Fig. 11, is free of the aformentioned problem. Having
observed that the appearance of large errors is connected
with the passage of shocks through elemental boundaries,
we performed an analysis with the following model problem
to investigate this phenomenon more systematically.

The general solution to a Riemann problem consists of at
most three distinct regions in space/time (where the con-
servative variables keep the same values throughout),
separated by a combination of at most three transition
zones, i.e., shocks, contact discontinuities, and rarefaction
fans. However, it is possible to obtain a solution consisting
of two regions in space/time separated by a single shock
wave. Derivation of such solutions is presented, e.g., in
[10]. This allows us to isclate the combined effect of shock
strength and discretization on the quality of the solution.
The model problem we have considered corresponds to a
two-phase shock tube configuration. Only the left state
needs to be specified (p=1; u=1), while the quantities on
the right are determined by the requirement that the flow
there is initially at rest and that the two states lie on the
same two-shock curve in state space [ 407. We take the con-
trol parameter in these experiments to be the Mach number
of the left state { M) with respect to a stationary reference
frame {this also defines the left pressure for constant y; we
take y = 1.4}. We note that the high values of M cause large
strength of the resulting shock. To more closely characterize
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FIG. 11. Spectral element-FCT method. Solution of the Sod Riemann

problem with X =10, N =16 at time t = 0.40. The shock now is less strong
than that of the Lax problem. The pressure profile is unaffected.

this dependence we introduce the Mach number of the right
state with respect to the reference frame of the moving shock
(M%). Tt is shown in [10] that there is a limiting value of
M, = 18898 past which the Ricmann problem does not
have a single shock solution. It is also shown that as this
limit is approached the corresponding M3 tends to infinity.

In Figs. 12 and 13 we show results for two different dis-
cretizations and three different values of M| corresponding
to increasing strength of the resulting shock. The two
discretizations considered here correspond to a multiple-
domain (K= 10, N=11; Fig. 12} and a mono-domatn case
(K=1, N=101; Fig. 13). The domain extends from —35 to
+ 5 and the shock is initially located at x = —4. Final states
are plotted with the shock having arrived at x =4. We see
that in both discretizations, post-shock oscillations are
produced above a threshold value for M, ; in the mono-
domain case these oscillations are weaker and the shock is
represented as a two-point transition. Examination of the
corresponding velocity profile (not shown here) even for the
high M cases shown no oscillations at all. The reason that
oscillations are produced is due to the rapid clustering of
collocation points, which in this case is more severe for the
rapid clustering of collocation points, which in this case is
more severe for the multi-domain example as the shock
crosses regions of rapid contraction/expansion many times.
In the mono-domain case the spacing in the interior of the
domain varies slowly and is proportional to 1/, in contrast
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FIG. 12. Spectral element-FCT method. A shock tube problem with a single-shock solution. Combined effect of the shock strength and of the
changing scale of the Chebyshev mesh on the quality of the density profile. Discretizaion: K= 10, N = 11. Mach number of the left state in the laboratory
frame: {(a) 0.6; (b} 1.2; (¢} 1.8. The shock strength increases with this Mach number.

to the ends of the domain where it scales as 1/N? The to the ones presented here gave similar results [37]. It is not
problem of post-shock oscillations is typical of shock- entirely clear how to characterize a strong shock but the
capturing schemes on nonuniform meshes with superlinear work in [10] suggests that in this particular case it is the
clustering or expansion of collocation points (flux points). value of M3 that most closely provides such a classification.
Indeed experiments with an ENO scheme on a mesh similar  For example, following that analysis we find that the shock
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Chebyshev grid, where the variation of the mesh distance is only linear. Density profiles for the same incoming Mach numbers as in the previous figure.

strength in the Sod problem is M} = 1.656 while the shock
strength for the Lax problem is M{ = 1961. For the single
shock model problem presenied above these wvalues
correspond to below and above the threshold A, for the
Sod and Lax problems, respectively. This is consistent with

the fact that there exist post-shock oscillations in the Lax
problem in multi-domains while the Sod problem is
unaffected.

The results of the previous paragraph suggest that certain
(K, N) discretizations can support stronger shocks than
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others and that shocks of modest strength can be ade- tral element-FCT algorithm in such situations we solve the
quately resolved even in highly distorted meshes. This is following two-diaphragm, three-phase problem:
true for more geqeral shock tube problems wl}ere more than p, =30, u,=0, P,=30, —5<x<—2,
two phases are involved and thus complex interactions of

shock waves with rarefaction fans and contact discon- p2=10, uy=0, P,=10, -2<x<2, (25)
tinuities occur. To demonstrate the robustness of the spec- p=0125, w,=0, P,=01, 2<x<5,
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FIG. 14. Spectral element-FCT method. Solution of a shock-tube problem with two diaphragms and three phases. Discretization: K =5, N=31.
Times (a) ¢ = 100, (b) r = 1.68. Generation of moderate strength shocks, and interaction of simple waves. Profiles for density, velocity, pressure in (a),

(b}, {c}, respectively.
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for r<0. The diaphragms are removed simultaneously at uniform mesh with 1000 points. The corresponding solu-
t=0. tions (not shown here) with a second- and eighth-order

The spectral element-FCT (K =35; N=31) solution is finite difference-FCT scheme produce smearing and ter-
plotted in Figs. 14a and 14b at times 7= 1.0 and +=1.68, racing of the solution both at the early instant (= 1.0},
respectively. The solid line represents a solution obtained where the shock propagating to the right crosses an expan-
with an eight-order finite difference-FCT scheme on a sion fan propagating to the left as well as at the late instant.
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3. TWO-DIMENSHONAL FORMULATION

3.1. Euler Equations in Conservative Form

The system of Euler equations for polytropic gas in two
dimensions is given by

u, +f(u), +g(u),=0 (26)
with
P m n
ae | ™ e mip+ P mu/p
lay - mujp ’ np+pP |
E (P+ Eym/p (P+ E)nfp
(27)

where m = pu, n= po, and P = (y — 1){E— (m* + n?)/p).

To construct the cell averages in two dimensicns we first
integrate Eq.(26) inx, ie, {77, and subsequently iny,
similarly from y,. to y,+. The final conservative form of the
system on a rectangular two-dimensional mesh is

0 — T -T) nr-e
ot Byt Ax; + Ay, =0, (28)
where we have defined
Gy = R ) dy (29a)
() = u _j e_y
o Ay} XY :
. 1 X+
it =Z§-L_ gulx, ;1)) dx (29b)

1 1

" Ax, Ay, (25¢)

rjf fo+ u(x, y) dx dy.

Yi— YXxi—

Here, the average quantities are evaluated at the Gauss
points (4, j), while the one-dimensional-average quantities
are evaluated at a mixed set of Gauss and Gauss-Lobatto
poins (see Fig. 15 for nomenciature). De-averaging of the
state vector @ is obtained by successive application of the
one-dimensional reconstruction procedure described in
Section 2.4.

3.2. Boundary and Interfacial Conditions

As in the one-dimensional case, upon completion of every
aigorithmic cycle the reconstruction process produces states
at the common flux-poitits of neighboting elements that are
generally distinct. For instance in Fig. 15, at the point O, of
element ¢! reconstruction gives the state vector u', whereas
at the adjacent point @, of element e” reconstruction gives
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FIG. 15. Spectral element mesh and patching in two dimensions,

the state u”, generally different from u'. To take this into
account we proceed as follows:

= We solve a one-dimensional Riemann problem for the
states u!, u>. An approximate solver is used based on
the Lax-Friedrichs scheme (33] or the modified Roe

scheme [ 15].

¢ We assign the resulting fluxes to both points @, @,;
these fluxes will enter the flux-averaging algorithm on the
interface.

The above procedure needs to be modified for the corner
points at intersections of three or more elements. To this
end, we observe that in the time-stepping we only use one-
dimensional-average fluxes and not the fluxes themselves,
With this in mind, we construct the following scheme for the
corner points:

e Based on u', u® we solve a one-dimensional Riemann
problem for M, = M,. The resulting fluxes are assigned to
both M, M, and enter the averaging algorithm along the
common boundary of e', e,

» Based on u’, u* we solve a one-dimensional Riemann
problem for M, = M,. The resulting fluxes are assigned to
both M., M, and enter the averaging algorithm along the
common boundary of €, ¢*.

The same process will be repeated on these points for a
second time to evaluate the fluxes along the other coor-
dinate direction.

In supersonic inflow-outflow boundaries we follow the
same scheme, with any given state being regarded as coming
from reconstruction on a fictitious element. This automati-
cally ensures compatibility with the physics of the problem.
In the case of reflecting boundaries, we again solve a one-
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FIG. 16. Two-dimensional Eulerequations solved with spectral element-FCT method. Shock reflection on a flat plate. Mach number of the incoming

flow 1s 2.9, Density profile (10 contours on a 5-element mesh).

dimension Riemann problem, by creating & mirror image of
the reconstructed state u. This fictitious state has a reversed
sign in the conservative variable containing the velocity
normal to the boundary,

3.3. FCT Method

The spectral element-FCT method in two dimensions is
very similar to the one described in Section 2.2 for one-
dimensional flows. The main steps of the proposed
algorithm are as follows:

o Step 1. Evaluate the field of cell averages corre-
sponding to the initial condition.

o Step 2. Compute the transportive fluxes corresponding
to the low-order scheme. The low-order positive-type
scheme used here is either the Lax—Friedrichs scheme or the
modified Roe scheme. The low-order fluxes are denoted by
F and G in x- and y-directions, respectively.

o Step 3. Advance {explicitly) cell averages in time using
low-order fluxes to obtain the low-order transported and
diffusive solution u. This is done using the third-order
Adams-Bashforth scheme or a hybrid Euler-forward/
Adams-Bashforth time-stepping scheme as was discussed in
Section 2.3.

¢ Step 4. Compute the transportive fluxes f and g corre-
sponding to the spectral element discretization at the

Gauss-Lobatto points and perform one-dimensional
averaging to obtain the fluxes I and " to be used in Step 5
{instead of f, g).

+ Step 5. Compute the antidiffusive fluxes Af=f— F and
Ag=g—-G.

o Siep 6a. Limit Af {characteristic-wis¢) based on the
transportive—diffusive field @ and advance in time {(using
an Adams—Bashforth third-order or the hybrid scheme) to
obtain an intermediate state i.

o Step 6b. Limit Ag (characteristic-wise) based on the
intermediate field & and advance in time (using an Adams—
Bashforth third-order or the hybrid scheme) to obtain the
final fictd at time level (n+ 1).

» Step 7. Reconstruct point values from the cell averages
at the new time level.

« Step 8. If the target time is not achieved go to Step 2.

34. Numerical Results

Next, we present two-dimensional examples: The first
problem involves an obligue shock reflected from a solid
wall. The computational domain is rectangular extending
from 0<x<4.12829 and 0< y<1 and discretized with
K =5 and 10 elements, with 21 points in each direction. The
initial conditions correspond to p=1.0, =29, v =0.0, and
P =1/1.4 throughout the domain. The boundary conditions

FIG. 17. Two-dimensional Euler equations solved with spectral ¢lement-FCT method. Shock reflection on a flat plate, Mach number of the incoming

flow is 2.9. Density profile (10 contours on a 10-glement mesh).
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mesh).

Density profile normal to the reflected shock (10 element

applied are: inflow boundary condition at x = 0 and outflow
boundary conditions at x = 4.12829. At the upper boundary
the post-shock condition is prescribed (p=1.7, 1 =2.61932;
v= —0506339; P=152824). At the lower boundary
{y=0) a reflection boundary condition is imposed. The
exact solution to this problem is an incoming shock of 29°
with the lower boundary and a reflected shock of 23.28°.
The exact solution past the second shock is described by
(p=268732, u=240148; v=0; P=2.93413). In Fig. 16 we
show a contour plot with 10 density levels for the solution
on the five-element mesh. The solution on the ten-element
mesh appears on Fig. 17; the improvement in accuracy due
to refinement is obvious. In both cases, the essential
geometrical features of the flow field are reproduced

accurately. The angle of the reflected shock is indeed 23°
and the pressure ratio at & peint in the middle of the region
past the second shock (x = 3.5, y =0.31) is P =2.9376 which
represents a deviation of 0.12% with respect to the exact
value. Taking a density profile in a direction normal to (and
approximately halfway along) the second shock no oscilla-
tions around the transition region (Fig. 18).

The second two-dimensional simulation is the interaction
of a shock with an expansion fan. A Mach 2.9 diatomic ideal
gas flow generates a shock at a compression corner of 16°;
the downstream flow expands around a second corner that
restores the original low direction. The corresponding spec-
tral element discretization consists of 12 element of variable
size with 20 x 20 collocation points in each element (see
Fig. 19). The lower boundary corresponds to an inviscid
wall and the upper as well as the exit are supersonic out-
flows. The initial conditions correspond to a Mach 2.9 flow
everywhere, The computed density distribution is shown in
Fig. 20 at time ¢ = 16. The geometrical features reproduced
here are the correct ones [41]. For example, the shock
propagates at 34° angle, in agreement with gas tables while
the expansion fan meets the shock at the correct location as
computed by the corresponding iso-Machs (not shown
here). There are no visible differences in the slopes of density
contours across clemental interfaces; this validates the
implementation of the interface conditions presented in this
work.

The last example we present is a two-dimensional simula-
tion of supersonic flow over a forward-facing step, a
standard benchmark test in the literature (sece [42]). The
domain extends from x =0 to x =3 and from y=0to y=1
with the origin located at the lower leftmost corner. Dis-
cretization is made with 252 elements of 5 x 5 collocation

-
. — —
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-

FIG. 19. Spectral element mesh for the compression ramp/expansion corner problem.
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N

FIG. 20. Simulation of a Mach 2.9 flow impiging a compression ramp/expansion corner configuration. The shock emanating from the ramp interacts

with the expansions fans around the corner,

points each; the corresponding spectral element mesh is
shown in Fig. 21. This resolution is equivalent to the
medium resolution (40 x 120} employed in [42]. The initial
conditions as well as the boundary conditions at the inflow
at x=0are p=14, u=30, v=0.0, and P=1 throughout
the domain, which corresponds to a Mach-3 flow. The rest
of the boundary conditions are: supersonic outflow at x =3
and reflection boundary conditions along both the bottom
and the top of the domain. A hybrid time-stepping algo-
rithm consisting of an Euler—forward/Adams—Bashforth
third-order scheme (as described in Section 2.3) was
employed for the temporal discretization.

In Fig. 22a we plot density contours with 30 levels at time
t=25 The agreement with the high resolution ren of
Woodward and Collela [42, p. 13] is excellent: the step on
the upper wall has been formed and it has the right length
while the reflected shock passes exactly through the upper
corner at the exit of the domain. In addition, the contact dis-

1T

ILLOL WL LT

FIG. 21.

continuity in the upper wall as well as the reflection due to
the step corner shock and its subsequent propagation across
the domain are in close agreement with the high resolution
results of Woodward and Collela and the more recent
results of Casper obtained with a high-order ENO
scheme [5]. The same is also true for the density field at
time 7 = 4.0 (Fig. 22b); here, however, the appearance of a
Mach stem in the lower wall alters the results slightly. Treat-
ment of the singularity at the step corner following the
approach of Collela and Woodward reduces that artificial
stem but it does not completely eliminate it; this result was
also obtained using the ETBFCT method by Woodward
and Collela [42, p. 151]. Unlike the ETBFCT results,
however, for the pressure field, in our calculations the pre-
shock region is not influenced by the shock and the pressure
remains always positive. Also, the staircase effect present in
the ETBFCT calculation with the medium resolution mesh
is largely absent in our calculation.

1

The spectral-element mesh for the Mach 3 flow over a forward-facing step. k=252, N=35.
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on each. Times (a) 1 =2.5, (b) r =40.

4. MSCUSSION

In this work, we have extended the spectral element-FCT
method to systems of hyperbolic conservation laws in one
and two dimensions. While monotonicity in the current
algorithm is ensured by employing the standard FCT
limiters of Boris and Book, the conservative property is
guaranteed by the discretization that employs a staggered
grid of Gauss and Gauss—Lobatto Chebyshev collocation
points. In this setting, fluxes are computed at the
Gauss—Lobatto points while cell averages are compuied at
the Gauss points (the “cell midpoints” in the spectral
Chebyshev space).

As regards time discretization, it was found that a hybrid
time-stepping scheme, that activates an Euler forward algo-
rithm around the discontinuities and an Adams Bashforth
scheme of third order in the smooth part of the domain,
privides the most accurate results. In particular, it
climinates the previously observed terracing effects in
smooth waveforms as it reduces significantly the dispersion
errors; the terracing effect was shown to be strongly
dependent on the phase properties (see also [11]). To this
end, many attempts have been made in the past to increase
the accuracy in phase properties of finite difference/volume
FCT methods [ 28]; this property is provided naturally in
the proposed algorithm by the spectral representation. It
was also shown for one-dimensional model problems that

Results of the two-dimensional spectral element-FCT code for the Mach 3 flow over a forward facing step. Density profiles with 30 contours

the resolution of contact discontinuities scales with the for-
mal order of accuracy of the scheme, in agreement with the
theory of Harten [14] and the subsequent findings of
Roe [36]. In two dimensions, we have demonstrated the
accuracy of the spectral element—-FCT method by com-
paring with two benchmark solutions as well as the
flexibility in handling non-rectangular domains using multi-
element decomposition. This discretization is similar to the
h— p discretization of Oden [6] and provides great
flexibility since a variable number of macro-elements or
collocation points per element can be employed to
accomodate both accuracy and geometric requirements.

The computational complexity of the method is similar to
standard ENO algorithms of the same degree of approxima-
tion; the main cost 1s encountered in reconstruction and
scales (in two-dimensions) as KN, where K is the number
of elements and N is the number of collocation points per
direction. Fast Chebyshev transforms can be employed for
large values of N to reduce this cost. As regards time step
restrictions due to the clustering of collocation points at
elemental boundaries, the use of low-order (relatively
low N) elements alleviates this constraint; for large values
of N a transformation method similar to that of [ 24] would
seem to be appropriate, given aiso the experience in [ 7] but
it has not yet been implemented in our code.

A difficulty we encountered in shock-tube problems is
associated with the low-order scheme employed in the FCT
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algorithm. By this, we refer to the appearance of occasional
O(1) errors behind a moving strong shock which we studied
systematically in the first part of this paper; this problem is
typical of shock-capturing methods on non-uniform meshes
if the collocation points cluster or expand superlinearly
[37, 347, These post-shock oscillations did not appear in
the two-dimensional examples reported here, either because
the shocks were not sufficiently strong or strong shocks
were not moving through the elements.
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